Assessment & Treatment of Neurotoxicity

Lecture 9: Snake Bite Management Course

Introduction

- This lecture relates mostly to patients with neurotoxicity
- However, it is also relevant to any patient with
 - Shock
 - Нурохіа
 - Severe bleeding or anaemia
 - Coma from any cause
- It relates to A & B of resuscitation

Identification of Neurotoxicity

- This is expected from bites by
 - Kraits
 - Cobras & king cobra
 - Some seasnakes

Neurotoxicity (1)

- Demonstration (or demonstration video)
- Cranial nerves to voluntary muscles are ALWAYS the first affected:
 - III, IV, VI (eyes)
 - V (mouth-opening)
 - VII (most facial muscles)
 - IX, X (swallow & gag, speech)
 - XI (accessory muscles of respiration)
 - XII (tongue)

Neurotoxicity (presynaptic)

Mild ptosis

Severe facial muscle paralysis

Neurotoxicity (2)

- Respiratory muscle assessment:
 - RR, depth of inspiration/tidal volume
 - SpO2 (& cyanosis)
 - accessory muscles maximal inspiration
 - intercostals inspiration & expiration (cough)
 - diaphragm inspiration
 - abdominals expiration (cough)
 - percussion & ascultation crepitations (may not be heard if very weak inspiration)
 - respiratory function tests -
 - PEFR meter or blow into sphygmomanometer (expiration)
 - incentive spirometer (inspiration)

Neurotoxicity (3)

- Truncal (abdominal & back) muscles:
 - walk, sit
 - lift head & shoulders off pillow
- Limbs:
 - upper & lower
 - distal & proximal
- Care assessing mental state/level of consciousness - cannot use Glasgow Coma Scale when paralysed (devised for head injury):
 - eye-opening, vocalisation, motor function
 - most useful indicator = ability to obey commands

Basic Respiratory Physiology (1)

- Oxygen content of air is 21%
- O₂ is exchanged for CO₂ in the alveoli
- In people with normal lungs, respiratory drive depends more on the CO₂ level than the O₂ level
- Respiratory rate decreases with increasing age up until about 12 yrs of age
- There is a certain amount of dead space in the respiratory tract inflow & outflow of air must be greater than this if these gases are to be exchanged & removed
- Tidal volume, T_v, is the volume of gas inhaled & exhaled in each breath, 7-10ml/kg at rest (larger in infants, smaller in large adults)
- Minute volume, M_v , is the amount of gas moved in & out of the lungs in a minute ie respiratory rate, RR x T_v

Basic Respiratory Physiology (2)

- During spontaneous breathing the respiratory muscles produce a negative pressure in the chest, expanding the lungs & sucking air in
- The respiratory muscles include:
 - The diaphragm (inspiration)
 - The intercostal muscles (inspiration & expiration)
 - The accessory muscles, especially in the neck (inspiration), but also the external chest muscles (expiration)
 - The abdominal muscles (forced expiration)
- The upper airway consists of the structures from the lips to the vocal cords
- The lower airway consists of the structures from the vocal cords to the alveoli, where gas exchange occurs

Basic Respiratory Physiology (3)

- Anything which narrows the upper airway
 - Increases the energy required to move air in & out of the lungs (so very weak respiratory muscles may be unable to overcome this extra resistance
 - Causes the noise known as stridor on inspiration, provided that enough respiratory muscles are strong enough (ie. a patient with neurotoxicity, a partly obstructed airway & weak respiratory muscles may not have stridor)
 - Reduces the tidal volume
 - May lead to both a fall in blood, & so cellular, O_2 levels & a rise in blood, & hence cellular, CO_2 levels both leading to cellular acidosis, which is detrimental to the function of all cells

Basic Respiratory Physiology (4)

- Upper airway obstruction can be due to
 - Coma or neurotoxicity causing weak upper airway muscles, especially causing the tongue falling back in a supine patient
 - Fluids accumulating ion the upper airway such as saliva, blood, vomit
 - Swelling of the soft tissues of the upper airway
- A completely obstructed upper airway may lead to paradoxical breathing, where
 - the stomach is pushed out & the chest is sucked in by the diaphragm
 - opposite to what is seen in a normal breathing pattern

Basic Respiratory Physiology (5)

- Anything which:
 - weakens the respiratory muscles:
 - severe exhaustion or neurotoxicity
 - or causes a reduced conscious state:
 - severe hypoxia or shock
 - intracranial bleeding
 - hypoglycemia or excessive sedation
 - may lead to:
 - an inability to overcome the extra resistance of a partly obstructed upper airway
 - a reduction in tidal volume
 - reduced O₂ levels & increased CO₂ levels in the blood
 - a loss of swallow reflex, & hence a risk of aspiration of fluids into the lungs

Oxygen Therapy

- Supplemental oxygen should be given to any patient with:
 - Respiratory distress
 - Neurotoxicity
 - Pulmonary aspiration
 - Evidence of low blood oxygen levels
 - Coma
 - Shock

Effectiveness of Administered Oxygen

- The concentration/percentage of oxygen delivered by any method (in addition to the 21% already present in air) depends on:
 - the flow rate
 - the patient's:
 - respiratory rate
 - tidal volume (a lower todal volume means more dilution with expired gas)
 - peak inspiratory flow rate
 - the presence of a partial upper airway obstruction

Methods for Administering Oxygen

Method	Flow rate I/min	Approximate Inspired Oxygen Percentage
Nasal prongs	1-3	23-28
Hudson mask	4-6	30-50
Venturi mask	2-8	23-40
Non-rebreather mask	10-15	50-70
Bag-valve-mask	10-15	70-85
Intubation	5-20	30-100

Basic Airway & Breathing Management

Objectives

- We will discuss:
 - General principles of airway management
 - Airway & breathing problems in snakebite
 - Airway assessment & non-invasive management
 - Ventilation assessment & manual ventilation

General Principles (1)

- Purpose of air flow
 - absorption of oxygen
 - removal of carbon dioxide
- Requirements
 - a patent (open & preferably protected) airway
 - ventilation (breathing moving air in & out of the lungs)
 - functioning alveoli
 - perfusion of (blood flow to) alveoli, (cardiac output, patent pulmonary vessels)

General Principles (2)

- Avoid complications (eg aspiration, hypoxia) from snakebite if possible
- Important to do the basics well
- Frequent reassessment is essential
- Any patient with airway or breathing problems should be transferred safely to a health centre or regional hospital where they CAN be managed
- Always know
 - why you are performing any intervention
 - check the outcome
 - look for adverse effects

Hypoxia & Hypercarbia

- Oxygen is required for all organs to function normally
 - brain coma, irreversible damage within 3-5 minutes (sooner in children)
 - heart hypotension/shock, bradycardia
 - kidneys acute renal failure
 - liver acute hepatic failure
 - bowel leakage of bacteria into circulation, septicemia
- Carbon dioxide retention causes
 - acidemia organ dysfunction, if severe
 - dilatation of cerebral blood vessels raised intracranial pressure
 - hyperkalemia exchange of K⁺ for H⁺

Airway & Breathing Problems (1)

- Upper airway obstruction
 - progressive weakness of muscles of the pharynx & neck leading to upper airway obstruction
 - voluntary motor cranial nerves/muscles
 - face, mouth, tongue, throat
 - occurs before weakness of the muscles of ventilation/breathing
 - hypoxia, hypercarbia
 - loss of ability to swallow

Airway Workshop: Upper Airway Model

Advanced Airway Management: Cutaway Model

Airway & Breathing Problems (2)

- Respiratory (breathing) failure:
 - progressive weakness of respiratory muscles (smaller intercostal muscles first):
 - intercostal muscles
 - accessory muscles (neck & shoulder)
 - diaphragm
 - abdominal muscles
 - hypoxia, hypercarbia, collapse of lung segments
 - loss of cough

Airway & Breathing Problems (3)

- Pulmonary (into the lungs) aspiration (inhalation) of saliva, vomit, or blood due to:
 - loss of swallow & gag reflex & retention of saliva in pharynx
 - ?excess saliva production
 - vomiting
 - spontaneous bleeding of gums
 - loss of cough reflex (power, not sensation is lost)
 - supine posture
 - oral food or fluids

Assessing the Airway

- Is the patient maintaining their airway?
- Is the patient protecting their airway?
- Is there:
 - stridor (usually will NOT occur because it requires reasonable respiratory muscle strength)
 - cyanosis
 - weakness of the facial muscles
 - pooling of secretions
 - loss of swallow, slurred or weak speech
 - paradoxical ("rocking boat") movement of the abdomen & chest
 - any air movement at all

Hypersalivation & Cranial Voluntary Muscle Paralysis - ? Atropine Use

Opening the Airway

- Body position:
 - left or right lateral
- Simple airway manoeuvres:
 - jaw thrust
 - chin lift (to the neutral position)
- Gentle suction of mouth & pharynx
- Simple upper airway devices:
 - Guedel airway (preferred)
 - nasopharyngeal airway (bleeding risk, better tolerated)

Yankeur Sucker

Guedel's Airways: Oropharyngeal

Nasopharyngeal Airway

The Protected Airway

- The airway is not protected (from aspiration of saliva, blood or vomit) if
 - absent gag & cough reflexes
 - saliva pooling in the mouth
- If the patient is not protecting their own airway then endotracheal intubation is the ideal management
- The laryngeal mask airway is a good alternative

Reducing the Risk of Aspiration

- Position the patient in the left or right coma/recovery position allows secretions to drain forwards, not backwards
- They require continuous 1:1 nursing
- Frequently gently suction the mouth of any vomit, saliva or blood
- Reduce excessive saliva production with atropine IV
 - 0.3-0.6mg/4-6 hrs adult
 - 0.01-0.02mg/kg/4-6 hrs child
 - will usually cause a mild-moderate tachycardia (warn the patient)

Assessing Breathing

- Are they ventilating?
 - note the rise & fall of the chest
 - is there misting of the oxygen mask if there is no oxygen flow?
 - lack of air movement may be due to airway obstruction, or hypoventilation
- Is it sufficient for good oxygenation?
- Is there
 - cyanosis or hypoxia
 - loss of ability to cough
 - evidence of aspiration
 - Note: weak breathing muscles may not be able to overcome a partly obstructed upper airway

Improving Breathing

- Opening the airway can improve air flow/reduce resistance to air flow
- Oxygen
- Manual/assisted ventilation
 - mouth-to-mouth 16% oxygen, tiring, infection risks
 - Ambubag/BVM up to 100% oxygen, tiring to hold mask for long periods
- IV antibiotic if aspiration & fever
Manual Ventilation (1)

- Bag/Valve/Mask ventilation
 - BVM has 2 bags
 - a ventilating bag
 - a reservoir bag improves FiO₂ when supplemental O₂ is used
 - can use room air (21% O_2)
 - adequate ventilation may be all that is required
 - supplemental O₂ may or may not be required
 - depends on presence of aspiration or pre-existing lung disease

Bag-valve-mask Ventilation: 2-Person

Manual Ventilation (2)

- Respiratory rate, RR = breaths/minute
- Tidal volume, TV = volume of each breath
- Minute volume, MV = RR x TV
- Adult RR=12/min., TV=7ml/kg (MV=5litres/min. for 70kg adult)
- Child or infant RR=15–25/min.,TV=8-10 ml/kg
- Ventilating bag volume varies with brand & size (neonatal - 250ml, paediatric - 500ml, adult -2000ml)

Manual Ventilation (3)

- Mask
 - size must be appropriate for the patient (4-5 for average adult)
 - seal may be difficult if bearded, small chin, no teeth, etc.
- Also need to maintain the airway
 - simple airway manoeuvres jaw thrust, chin lift
 - upper airway devices Guedel/oropharyngeal
- Technique
 - requires practice
 - monitor the effectiveness of what you are doing
 - change as necessary

(Almost) Successful Basic Airway Management

Summary: Basic Airway Management

- The most important aspects of managing a snakebite patient are:
 - assessing and managing the airway
 - assessing and managing the breathing
 - continually reassessing both
 - ensuring adequate vital organ oxygenation

Advanced (Invasive) Airway & Breathing Management

Objectives

- Cover techniques where equipment is placed into the laryngopharynx &/or the trachea
- Discuss the appropriate use of various airway management techniques in envenomed patients
- Will be followed by 2 practical sessions

Procedures in Medicine (1)

- For every one you must know
 - Indications
 - Contraindications
 - Advantages
 - Disadvantages
 - Requirements
 - Details
 - Complications
 - Aftercare

Procedures in Medicine (2)

- When preparing for a procedure you must prepare
 PaYED
 - Patient & relatives
 - Yourself & other staff
 - Equipment, including monitoring
 - **D**rugs

VENTILATORY CONTROL BY FEEDBACK LOOPS

Respiration in the lungs

Respiration in the lungs

Spontaneous Ventilation

Middle Passive Expiration NORMAL LUNG

Invasive Airway Management

- Endotracheal tube (ETT)
 - cuff in trachea, the airway is almost 100% protected
- Laryngeal Masks (strictly speaking is an UPPER airway device):
 - no cuff in trachea, the airway is NOT 100% protected
 - newer devices are safer & easier to use
 - newer devices have a port for a 14G orogastric tube & other safety features

Endotracheal Intubation (1)

Advantages

- Both maintains & protects the airway (with the cuff in the trachea)
- Relatively secure
- Allows for mechanical ventilation
- Disadvantages
 - Technical skill & equipment is required & is not always available
 - In some cases it may be technically very difficult
 - Patient must be adequately sedated to tolerate the tube insertion & presence
 - The procedure is associated with some potential complications

Endotracheal Intubation (2)

Indications

- Airway protection eg can't swallow, pooling saliva
- Airway obstruction eg. paradoxical breathing
- Increase oxygenation $PaO_2 < 60 mHg$
- Increase/manipulate ventilation PaCO₂>60mmHg (despite best available non-invasive respiratory support)
- Muscular paralysis/apnoea (patient is not breathing)

Endotracheal Intubation (3)

- Contraindications
 - A simpler procedure will suffice
 - Non-starved patient, if an elective procedure (relative CI)
 - Likely difficult intubation, no-one skilled enough to perform procedure

Endotracheal Intubation (4)

- Complications (a long list!)
 - Dental injury
 - Mucosal injury & bleeding
 - Globe injury
 - Inducement of vomiting & aspiration
 - Oesophageal intubation & death
 - Damage to vocal cords
 - Late tracheal stenosis, esp. in children
 - RMB intubation hypoxia, lung collapse
 - Pneumothorax
 - Tracheitis, pneumonia

Endotracheal Intubation (5)

- Patients with neurotoxicity deteriorate gradually:
 - identify those patients who will require intubation before they deteriorate to the point that they need immediate intubation
 - intubated 'semi-electively'
 - prepare & check equipment, drugs, assemble staff so intubation occurs in a planned, orderly, controlled manner
- Require a rapid sequence intubation to reduce the risk of pulmonary aspiration since:
 - not starved
 - vomiting or gastric stasis
 - increased oral secretions

Rapid Sequence Intubation

- Everything ready:
 - Patient, Yourself & Staff, Equipment, Drugs
- Pre-calculated drug doses midazolam, fentanyl ideal; less ideal are morphine, diazepam, ketamine
- Fast-acting muscle relaxant (suxamethonium) may not be needed in a fully paralysed patient
- Pre-oxygenation, monitor SpO2
- Cricoid pressure Sellick's manoeuvre
- <u>ALWAYS</u> check & confirm ETT tube position cuff or black line JUST through cords
- Secure tube well
- Special considerations in children

Confirming ETT Position

- Visualisation passing though cords
- End-tidal CO2 monitoring
- Visible equal chest expansion
- Air entry in both axillae, not in stomach
- Palpate ETT pass under fingers
- Palpate cuff as inflated in trachea
- Fogging of tube on expiration
- Oesophageal detector device
- Ease of ventilation
- Maintenance of oxygenation
- CXR

Laryngeal Mask Airways

- Delivering air into the laryngopharynx & hold it open
- Require relatively normal anatomy to work effectively
- Require less skill & training to insert
- Some may have a 'cuff' in the oesophagus (oesophagus is distensible; does not prevent aspiration), or OGT port
- In envenomed patients, they are a "second best" to an endotracheal tube
- Indications:
 - patient not maintaining & protecting own airway
 - hypoventilation, hypoxia or aspiration
 - endotracheal intubation is not possible (skills or equipment) & patient's airway is not able to be maintained by other means
 - "failed airway" drill

Mechanical Ventilation

Mechanical Ventilation (1)

- Role to provide adequate gas exchange until the envenomation can be definitively treated & the patient has recovered ability to ventilate
 from the lungs to the cells
- Unless they have co-morbidities (eg. COAD), or complications (eg. aspiration), envenomed patients will have normal lungs & be easy to ventilate
- Record & monitor position of ETT & adequacy of ventilation, oxygenation
- Never leave this to the relatives!!!!!!!!!!
- Always sedate & give analgesia:
 - often have upper limb power still
 - ETT is uncomfortable, frightening
 - especially children
 - then need to control ventilation don't leave it to the patient

Mechanical Ventilation (2)

- Modes of ventilation:
 - volume-driven ventilator the pressures achieved determined by the patient's lung compliance, & volumes & times set
 - pressure-driven ventilator the tidal and minute volumes depend on the patient's lung compliance as well as on the pressures & times set
 - pressure or volume driven ventilation ventilate the patient with the lowest pressures that achieve adequate tidal volume (and minute ventilation)

Mechanical Ventilation (3)

- Mandatory & Triggered breaths:
 - Mandatory breaths:
 - delivered at a set frequency, regardless of the patient's respiratory effort
 - useful if the patient is not making any respiratory effort
 - Triggered breaths are:
 - triggered by the patient's respiratory effort.
 - good for keeping the ventilator 'coordinated' with the patient's own breathing

Mechanical Ventilation (4)

- Initial ventilator settings chosen depending on the patient's size & clinical problem
- Rate (breaths/minute) x tidal volume (volume of each breath) = minute ventilation (minute volume), ie. R x TV = MV
- Tidal volume at rest 7-10ml/kg (1/10th of blood volume)
- Adult Rate 12/min. x volume ~500ml = 5-6 litres/min
- Child or infant Rate 15–30/min. x 10 ml/kg tidal volume
- Start with an FiO₂ of 100%; reduce to <60% in LESS THAN 12 hours (O2 toxicity)
- I:E ratio of 1:2 (assuming normal lungs)

Mechanical Ventilation (5)

- Positive End Expiratory Pressure (PEEP)
 - airway pressure occurring at the end of expiration during positive pressure ventilation.
 - the 'resting' pressure in the circuit, between breaths
 - increasing the PEEP increases the end expiratory volume of the lung (residual volume)
 - eg. 5-7 cm H2O
 - keeps more alveoli open for more of the respiratory cycle; may improve gas exchange & reduce shunt
 - risk of accumulating air within lungs "auto-PEEP"

Mechanical Ventilation (6)

- Look at the effect of the ventilator settings chosen
 - check that the airway pressures (mean & peak) are not too high
 - check a blood gas
 - Is the PaO₂ adequate (should the FiO₂ be reduced or increased)?
 - Is the PaCO₂ acceptable (should the minute ventilation be increased or decreased)?
 - close monitoring & adjustment of ventilator settings as needed is at least as important as the initial settings

Mechanical Ventilation (7)

- Avoiding complications, death of intubated & ventilated patients:
 - Always check A & B in a ventilated patient if BP drops
 - over-intubation/right main bronchus intubation is VERY common, especially in children; calculate correct depth, check expansion & air entry, CXR!
 - UL weakness develops after airway obstruction & respiratory failure - the patient cannot swallow or breathe, but can still pull out their tube, especially children
 - secure tube well!
 - sedate all patients (morphine/diazepam)
 - explain to patients what is happening
 - monitor patients every second
 - sedation allows better control of oxygenation & ventilation

Mechanical Ventilation (8)

• Gastric tube:

- All intubated patients need a gastric tube to:
 - reduce the risk of gastric distension and gastro-oesophageal reflux, & the risk of aspiration (can occur, even with an ETT)
 - make ventilation easier by reducing intraabdominal pressure
 - monitor fluid losses
 - watch for any upper GI blood loss
- Often done by the least experienced doctor, & done traumatically, causing upper airway bleeding, often leading to inappropriate management, eg giving blood products - so insert carefully
- The better alternative is to ALWAYS use an OGT, not a NGT
- Also avoids the problem of sinusitis from prolonged nasogastric intubation

Mechanical Ventilation (9)

- ETT removal do it once ONLY:
 - ptosis is resolving
 - obeying commands & fully awake (sedation off)
 - able to protrude tongue
 - can sit up on own
 - can take deep inspiration
 - can breathe for several hours on T-piece without difficulty
 - mouth suctioned
 - Then essential to monitor patient even more closely be ready to re-intubate

Recovery after Mechanical Ventilation

Management of Mechanical Ventilation (1)

- Nursing care
 - frequent turns of all patients with neurotoxicity reduce pressure areas & atelectasis
 - always use humidifier in circuit long-term
 - regular nebulisation saline or salbutamol
 - gentle suctioning of mouth & ETT (use STERILE catheter!)
 - maintain suction, oxygen availability
 - Amubag/BVM at bedside
 - intubation equipment nearby
 - know where the closest ventilator is
Nursing the Ventilated patient

Management of Mechanical Ventilation (2)

- Additional treatment:
 - fluids
 - sedation
 - stress ulcers: H₂antagonist
 - physiotherapy
 - nasogastric feeding
 - stringent care of the paralyzed patient: turns
 - regular airway suctioning & nebulizing

Management of Mechanical Ventilation (3)

- Monitoring:
 - oxygen saturation,
 SpO₂
 - end-tidal carbon dioxide, ETCO₂
 - blood pressure, BP
 - heart rate, HR
 - urine output, UO
 - temperature, T
 - potential infections:
 - chest
 - urine
 - wounds

Management of Mechanical Ventilation (4)

- Laboratory investigations:
 - рН
 - $-PaO_2$
 - PaCO₂
 - K⁺
- CXR:
 - initially
 - whenever any sign of deterioration, eg. worsening oxygenation, fever, chest signs

Complications of Mechanical Ventilation (1)

- Equipment:
 - malfunction or disconnection
 - contamination nosocomial pneumonia
 - loss of O₂ supply
- Pulmonary:
 - atelectasis
 - pneumonia
 - diffuse lung injury
 - barotrauma
 - oxygen toxicity
 - ARDS

Complications of Mechanical Ventilation (2)

- Circulation:
 - reduced cardiac output
 - reduced splanchnic blood flow
 - increased intracranial pressure
 - fluid retention
- Others:
 - gut distension
 - mucosal ulceration
 - muscle weakness
 - sleep disturbances
 - psychiatric complications
 - pressure areas

Supportive Care of the Ventilated Patient

- Patient sedation, analgesia
- Maintenance fluids & orogastric or IV feeding
- Urinary catheter & fluid balance
- Hourly vital signs recording (& act on abnormalities)
- Turns to reduce atelectasis & pressure areas; chest physiotherapy
- Local tissue injury care

Good Airway & Breathing Management - just in time!

...Leads to Great Clinical Outcomes

Summary - Key Points

- The most important aspects of managing a snakebite patient are:
 - assessing & managing the airway
 - assessing & managing the breathing
 - continually reassessing both
 - ensuring adequate vital organ oxygenation
- Anticipate complications
- Monitor closely, reassess frequently
- Promptly act on & treat deterioration & complications