Assessment and treatment of coagulopathy

Lecture 10: Snake Bite Management Course

Introduction

- Bleeding is the major systemic effect of bites by:
 - Malayan pit vipers (Calloselasma rhodostoma)
 - Indo-Chinese Russell's vipers (Daboia siamensis)
 - Green pit vipers (Cryptelytrops spp., Viridovipera vogeli)
- The severity of a bleeding disorder can range from mild to very severe
- In many patients bitten by green pit vipers lowered platelet counts do not result in significant bleeding
- At the opposite extreme, severe venom-induced coagulopathy after Malayan pit viper bite can cause catastrophic bleeding from multiple internal and external sites, including intracranial haemorrhage

Species that cause bleeding

Malayan pit viper (Calloselasma rhodostoma)

Indo-Chinese Russell's viper (Daboia siamensis)

Any 'green pit vipers' including Cryptelytrops albolabris, C. macrops or Viridovipera vogeli 17/06/2021

Snake venom effects on blood

- Cleavage of prothrombin to produce thrombin, which activates fibrinogen, produces fibrin, FDP, XDP, and then activates plasminogen, leading to plasmin production: Net effect = <u>incoagulable blood</u>
- 20WBCT will be POSITIVE
- Laboratory tests:
 - Abnormal prothrombin time (PT)
 - Abnormal activated partial thromboplastin time (APTT)
 - Hypofibrinogenaemia
 - Haemoglobin may rise early and then fall due to bleeding
 - Thrombocytopenia
 - WBC: neutrophil leucocytosis

Summary of blood effects

- Factor depletion:
 - II, V, VII, VIII, IX, X, XIIIa
- Hypofibrinogenaemia
 - with increased fibrin, FDP, XDP
- Depletion of activated protein C, antithrombin III and antiplasmin
- Increased fibrinopeptide A
 - due to plasminogen activation by fibrin deposition
- Inhibition of platelet aggregation and increased platelet activation = thrombocytopenia
 - Platelet malformation on microscopy
- RBC structure alteration: spheroechinocytosis

Thrombocytopenia

- The venoms of Cambodian pit vipers affect platelet aggregation and agglutination via direct and indirect mechanisms and also activate platelets
- Net effect = thrombocytopenia
- In combination with consumption coagulopathy and increased endothelial permeability, platelet loss contributes to persistent and potentially fatal bleeding
- It is therefore important to monitor platelet counts at least once a day
- In some cases thrombocytopenia appears before frank bleeding becomes obvious

Venom-induced coagulopathy

Photo: Prof. D.A. Warrell

Venom-induced coagulopathy

Intracranial haemorrhage after Malayan pit viper bite in South Viet Nam

Intracranial haemorrhage after Indo-Chinese Russell's viper bite in Myanmar

Photos: Dr Trinh Xuan Kiem

8

Venom-induced coagulopathy

Mechanisms of haemostatic disruption

- Consumptive coagulopathy
 - Often due to procoagulant cleavage of prothrombin which leads to activation of the coagulation cascade resulting in depletion (consumption) of clotting factors and collapse of normal haemostasis
- Anticoagulant coagulopathy
 - Inhibit prothrombinase complex, thrombin inhibition or protein C activation
- Endothelial activation and integrity loss
 - Act by promoting release of plasminogen activator from endothelial cells, or release of urokinase and plasminogen activation inhibitor

Loss of integrity causes leakage and increased blood losses

Mechanisms of haemostatic disruption

- Platelet aggregation inhibition
 - Several mechanisms involved
 - Toxins prevent platelet aggregation resulting in reduction in fibrin clot integrity and quality and this contributes to bleeding
- Platelet activation
 - Multiple mechanisms and sites of action
 - Platelet clumping can contribute to thrombosis, and to obstruction of kidney nephrules which leads to renal necrosis and acute renal failure
- Thrombocytopenia
 - Platelet depletion contributes to bleeding disorder and to spontaneous haemorrhage

Assessment of haemostasis

- Visual examination is the patient bleeding abnormally?
 - From bite site/fang marks/recent wounds, cuts or abrasions
 - Into subcutaneous tissues, blisters/bullae, deeper tissues
 & muscle
 - From venepuncture sites
 - From gums, nose, subconjunctival, or tear ducts
 - Vomiting blood or blood in stool (malaena)
 - Are they coughing blood (haemoptysis)
 - From renal tract (especially after IDC insertion)
 - Vaginal in both menstruating or non-menstruating women

Assessment of haemostasis

- Non-visual indications from history or examination:
 - Intracranial haemorrhage may be indicated by history of headache, sudden collapse, confusion, impaired conscious state or lateralising neurological signs
 - Abnormal abdominal tension or tenderness
 - Auscultation of chest sounds
- Bedside investigations
 - 20 Minute Whole Blood Clotting Test (20WBCT) is the most important test in snake bite as it directly tests haemostasis and is a sensitive indicator of blood factor consumption
- Laboratory investigations
 - Prothrombin time (PT), activated partial thromboplastin time (APTT) fibrinogen, platelets, FBC, factor assays

Negative test: clotting blood

Positive test: non-clotting blood

- Known as 20WBCT
- Result recorded as either a positive or negative test finding
- 'positive test': non-clotting (incoagulable) blood
- 'negative test': normally clotting (coagulable) blood
- A positive test diagnoses pit viper envenoming
- A positive test is an absolute indication for antivenom

- Equipment needed:
 - Needle and syringe
 - Alcohol swabs
 - Tourniquet
 - Clean, dry <u>GLASS</u> bottle or test tube
 - Gloves
 - Sharps disposal container
 - Watch or clock
- It is absolutely essential that <u>GLASS</u> be used, plastic tubes or bottles will give the wrong result

Draw 2 millilitres of venous blood after cleaning the venepuncture site with a sterile, alcohol swab. Follow appropriate sharps protocols Place the blood in a clean, dry <u>GLASS</u> tube or bottle, and let stand undisturbed for 20 minutes at room temperature, away from sunlight

After 20 minutes has passed tilt the bottle/tube over <u>ONCE</u>. If the blood has clotted it will appear as a solid clot in the bottom of the container, indicating a <u>NEGATIVE</u> result If the blood is liquid and runs down to the inverted cap of the container, the blood is non-clotting indicating a **POSITIVE** result. A partially clotted sample is also a **POSITIVE** result

- The 20WBCT should be performed on all snake bite patients when they first arrive at hospital
- If the initial result is negative, and the bite occurred less than 2 hours previously, repeat after 1 hour
- A test is considered positive, even if a partial clot is present in the sample: indicates reduced factor level
- A positive 20WBCT is an <u>absolute indication</u> for administration of appropriate antivenom, such as TRC Hemato Polyvalent Snake Antivenin
- The test should be repeated every 6 hours after the administration of antivenom, and can be used as a guide to the need for further antivenom treatment

Basic supportive treatment

- Strict bed rest with conservative elevation of the bitten limb to assist drainage of fluid from tissue
- Minimise trauma, avoid unnecessary venepuncture
- Maintain BP of at least 90/60 by providing adequate replacement of bleeding losses:
 - Crystalloid or colloid
 - Haemaccel
- Avoid intramuscular injections due to increased risk of bruising
- Give a therapeutic dose of correct antivenom as soon as possible to neutralise toxins
- May need to consider blood products/whole blood

Antivenom for bleeding patients

- TRC Haemato Polyvalent Antivenin is recommended as primary treatment
- Starting dose:
 - 2-5 vials for severe green pit viper bites
 - 10 vials for Malayan pit viper or Indo-Chinese Russell's viper bites
- Review after 6 hours:
 - If <u>20WBCT positive</u> AND <u>active</u>
 <u>bleeding</u> = <u>repeat antivenom</u>
 - <u>20WBCT positive</u> AND there is
 <u>NO bleeding</u> = hold antivenom
 - **<u>20WBCT negative</u>** AND there is **<u>NO bleeding</u>** = hold antivenom

Use of blood products and whole blood

- There are risks associated with the transfusion of blood products and whole blood
- In some cases this may increase the severity of the coagulopathy, and could potentially result in an increased risk of haemorrhage
- Blood products such as fresh frozen plasma and cryoprecipitate are expensive
- Haemaccel for volume expansion in hypovolaemic shock is also expensive
- Transfusion of whole fresh blood may be necessary, especially in the absence of effective neutralisation of circulating venom by an appropriate antivenom

Deciding to give fresh whole blood

- In the absence of effective antivenom, the decision to transfuse should be based on results of regular review of haemostasis (at least 6 hourly)
- If <u>20WBCT positive</u> AND <u>significant active bleeding</u>:
 - fresh whole blood transfusion and administration of vitamin K (10 mg i.v.i.) with review every 6 hours
- If <u>20WBCT positive</u> AND there is <u>NO bleeding</u>:
 - consider giving vitamin K (10 mg i.v.i.) with review every 6 hours
- If **20WBCT negative** AND there is **NO bleeding**:
 - haemostasis normal and transfusion may not be required, but continue 6 hourly reassessment

Transfusion of fresh whole blood

- Only consider if 20WBCT is positive <u>AND</u> there is evidence of <u>SIGNIFICANT</u> active bleeding
- Patients who do not have significant blood losses probably do not need transfusion
 - Assess bleeding you can see and potential bleeding that you cannot see
 - Thrombocytopenia in absence of active bleeding may not require platelet replacement
 - Positive 20WBCT indicates factor depletion, but in the absence of active bleeding, may not require transfusion of blood factors, use of vitamin K may be enough to correct
- Cross-matching absolutely vital
- Think rationally and act on the evidence!

Summary

- Bleeding is caused by pit vipers, not cobras or kraits!
- Results in factor depletion, thrombocytopenia and failure of haemostasis
- Compounded by loss of blood vessel integrity due to increase endothelial permeability and leakage
- 20WBCT is most important test in snake bite
- Platelet counts should be done daily
- Antivenom is the most important drug for treating coagulopathy and loss of endothelial integrity
- Fresh whole blood may be needed if antivenom is not available and 20WBCT ++ with active bleeding
- Vitamin K can help to accelerate factor biosynthesis